Approaches to desensitization

Malcolm Davies

Division of Nephrology, Helen Joseph Hospital

University of the Witwatersrand

Scope of the problem

- A significant proportion of KF patients on transplant waitlists are highly sensitized (PRA > 80%):
 - Canada: approximately 20%
 - US: approximately 30%
 - UK: more than 40%
 - SA: unknown
- Presensitization reduces the probability of a donor match
 - US: only 6.5% of highly sensitized patients will receive a transplant / year

Rationale for desensitization

- Improved QALY at a slightly higher cost than remaining on dialysis
- Possibly improved patient survival over remaining on dialysis (US vs UK data)
- In SA: shortage of donors and shortage of dialysis slots may favour HLAi

Rationale for desensitization cont./

Meier-Kriesche H-U et al. Am. J. Transplantation 2004;4:1289-1295

Reference	Ν	% of biopsies with ABMR
Einecke G et al Am. J. Transplant 2009;9:2520-2531	27	C4d+ ABMR: 26% All ABMR: 63%
Regele H et al. J. Am. Soc. Nephrol 2002;13:2371-2380	213	C4d+ ABMR: 34%
Matas AJ et al. Am. J. Transplant 2010;10:315-323	240	C4d+ ABMR: 38% DSA+: 40%

Immunogenicity of HLA

 Non-self HLA can be detected to the resolution of 1 amino acid difference in 1 epitope

- Bound α1 and β1 chains of HLA II can constitute an epitope for non-self recognition
- Gene conversion in HLA subtypes results in public epitopes and CREGs, allowing recognition of multiple non-self HLA types in a single sensitizing event

Where did it all go (conventionally) wrong?

May FNJ et al. Transplant Rev 2021;35:100596

Consequences of humoral immortalization

- Differences in LLPC generation may account for differential success rates of pre-engraftment / early ABMR and LPABMR intervention
- LLPC produce large amounts of high-affinity antibody on an ongoing basis (do not require re-exposure)
 → contributes to the "slow burn" of LPABMR
- Peripheral blood antibody and LLPC counts are poor correlates of LLPC presence and activity in the BM compartment
- Immortalization / independence from replacement via antigendependent pathways from immature B-cell pool reduce the efficacy of standard T- and B-directed interventions
- Survival signals from stromal supporters further abrogate the efficacy of interventions targeting the LLPC

It ain't all about the antibody

- Most rejection in the context of (dn)DSA is **MIXED**
- Mixed rejection carries a poorer prognosis than "pure" ABMR
 - This may partly account for poorer outcomes in LPABMR (dnDSA more frequent)
- Presence of mixed rejection contributes to refractoriness towards desensitisation interventions
- Development of DSA is associated with non-compliance with CNI (T cell suppression)
- Development of dnDSA in particular is probably best viewed as an overall measurement of inadequate immunosuppression

Memory T cells

- Memory T cells contribute effector function after engraftment
 - CD4 memT provide efficient helper function to B lineage to generate DSA

Multiple subsets:

- Tissue resident (T_{RM}) provide intragraft effector function
- Terminally differentiated effector (T_{EMRA}) CD8 require less IL-2 for survival
- Follicular helper (memT_{FH}) are better B-cell helpers than "conventional" T_{FH}
- Peripheral helper (memT_{PH}) share T_{FH} characteristics but are able to activate B outside of secondary lymphoid tissue (intragraft TLT)
- Memory stem (T_{SCM}) rapid increase after T depletion with ATG to reconstitute immune response

Su CA et al. Am J Transplant 2014;14:568

ESOT guidelines: pretransplant desensitization

Assessment of immunological risk

HUMORAL RISK

RISK CATEGORIES & MANAGEMENT

1. Day-zero DSA with positive CDC

 \rightarrow Tx impossible. Require desensitization before Tx

2. Day-zero DSA with positive flow and negative CDC

→ Tx possible but very high risk for acute AMR and accelerated chronic AMR. Require adaptation of follow-up and maintenance IS

3. Day-zero DSA with negative flow

→ **Tx possible** with risk for acute AMR, and acceptable medium-term graft survival. Require adaptation of follow-up and maintenance IS

4. Absence of day-zero DSA but potential cellular memory against donor HLA

- \rightarrow Tx possible with risk for AMR increased.
 - 4.a. Probably cellular memory if:
 - historical DSA
 - pregnancy and/or previous transplant with repeat Ag
 - 4.b. Possible cellular memory if:
 - transfusion(s) with no information on blood donors

5. No DSA and no cellular memory

- \rightarrow Tx possible lower risk for AMR but de novo DSA still possible
 - *NB: patient with day-zero non DSA HLA antibodies are "good humoral responders" with possible increased risk for subsequent de novo DSA generation*

HUMORAL MEMORY

SEROLOGICAL MEMORY

CELLULAR MEMORY

NAIVE

Mamode N et al. Transpl Int 2022;35:10511

Pre-engraftment desensitization protocols

	Antibody removal	Antibody synthesis blockade	Induction	Maintenance
Johns Hopkins	PEX, LD IVIg	RTX	ATG	CNI, MMF, steroid
Мауо	PEX, LD IVIg	-	ATG	CNI, MMF, steroid
Cedars-Sinai	HD IVIg	RTX	Alemtuzumab, ATG, or antiCD25	CNI, MMF, steroid
University Hospital Conventry	PEX	-	AntiCD25	CNI, MMF, steroid
University of Illinois	PEX, LD IVIg	-	ATG	CNI, MMF, steroid
University of Maryland	PEX, LD IVIg	-	ATG	CNI, MMF, steroid

TTS guidelines: desensitization of ABMR

	Antibody type	Banff	First-line Rx	Evidence	Second-line Rx	Evidence
Early (< 30 days)	Preformed DSA	Active AMR	PEX daily or alt day x 6 cycles IVIG 100mg/kg daily AFTER PEX or 2g/kg stat AFTER PEX course	1C 1C	Complement inhibitors RTX 375mg/m ² stat Splenectomy	2B 2B 3C
Late (> 30 days) Preformed DSA Preformed DSA De novo DSA	Active AMR	PEX daily or alt day x 4 – 6 cycles IVIG 100mg/kg daily after PEX or 2g/kg stat after PEX course Corticosteroids	2C 2C EO	RTX 375mg/m ² stat	28	
	Preformed DSA	Chronic AMR	Optimize baseline IS	1C	IVIG	3C
	De novo DSA	Active AMR	Optimize baseline IS Evaluate non-adherence	1C	PEX with IVIG RTX 375mg/m ² stat	3C 3C
	De novo DSA	Chronic AMR			IVIG	3C

Schinstock CA et al. Transplantation 2020;104:911

IgG endopeptidase (IdeS)

Imlifidase

- Cysteine protease that cleaves IgG
- Highdes study
 - Single arm, prospective study, n = 18
 - Highly presensitized patients undergoing HLAi transplant
 - 6 months follow-up

Antibody depletion is insufficient Merge Hoechst

Xiang Z et al. Nat Immunol 2007;8:419

- Removal of antibody is temporary with rebound expected from uncontrolled LLPC / memB cell source on discontinuation
- Antibody exerts suppressive effect on LLPC populations: removal of antibody by PEX reduces apoptosis

Control of cellular source: B lineage depletion

		n	Patient survival	Graft survival	Incident rejection	Graft function
High PRA (PRA > 80%)	Vo 2013	11	No difference	No difference	Favours RTX	Not reported
	Vo 2010	152	No difference	Favours RTX	Favours RTX	No difference
	Laftavi 2011	37	No difference	Favours RTX	Favours RTX	Not reported
Positive DSA	Hirai 2012	113	No difference	Favours RTX	Favours RTX	No difference
	Loupy 2010	96	No difference	No difference	Favours RTX	Favours RTX
Positive CDC	Stegall 2006	61	Not reported	Not reported	Favours RTX	No difference
	Umanath 2012	27	Not reported	Not reported	Favours RTX	No difference
High risk (PRA > 20% or peak PRA > 50%,or current/historic CDC, or current/historic DSA, or previous graft loss due to rejection)	Ejaz 2013	20	No difference	No difference	Not reported	No difference

Macklin PS et al. Transplantation 2014;98:704

Rethinking RTX

Clatworthy MR et al. New Eng J Med 2009;360:2683 С 600 * 500 CD19⁺ CD32b⁺ B cells/μl 400 300 200 100 0 CR DF STA HV Pallier A et al. Kidney Int 2010;78:503

 Pan Bcell depletion may accelerate graft loss through loss of Breg

Time (months)

Differential susceptibility of B cell populations to depletion

- Germinal centre and marginal zone B (memB) are less sensitive (LAD > spleen) to RTX than peripheral blood B cells Vugmeyster Y et al. Int Immunopharm 2003:3:1477
- Peripheral blood memB appear resistant to RTX
- RTX may shift naïve B cell phenotype on repopulation to enhance T stimulation

Gong Q et al. J Immunol 2005;174:817

Bcell intrinsic factors	Lack of CD20 expression
	CD20 modulation / endocytosis
	Lipid raft composition
Patient factors	FcγRIIIA polymorphism
	FcγRIIB expression
	C1q polymorphisms
	Exhaustion of cytotoxic mechanisms (complement depletion)

Directed plasma cell depletion

- Antibody removal decreases FcyIIbR suppression on PC proliferation and DSA production •
- Blockade of 26S proteosome protein degradation results in accumulation of proteins in PC ٠ and PC apoptosis

Eskandary F et al. J Am Soc Nephrol 2018;29:591

DSA MFI_sum

ABMR category chronic/inactive

chronic/active acute/active no ABMR no biopsy

2

(9%)

3 (4%)

1

(4%) (13%)

Kwun J et al. J Am Soc Nephrol 2017;28:1991

Tocilizumab

- IL-6 inhibition theoretically could reduce survival signal to LLPC
- No good evidence yet exists to support Tocilizumab use in desensitization:

Reference	n	Details	Outcome
Pottebaum AA et al Transplantation 2020;6:e543	7	Observational study: acute active ABMR	50% DSA reduction in 2/3rds of patientsStable graft function at 12 months3 patients had subsequent rejection episodewithin 2 years
Shin B-H et al Transplantation 2020;104:856	12	Observational: chronic ABMR	8 patients showed non-significant reduction in DSA
Kumar D et al Kidney360 2020;1:663	10	Observational: chronic ABMR	No improvement in graft function decline at 1 year Progression of chronic histology lesion
Massat M et al Am J Transplant 2020;21:1641	9 (Toc) vs 37 (SOC)	Retrospective cohort: chronic ABMR	No difference in 1 year graft survival Similar progression of chronic histology lesion
Noble J et al Front Med 2021;24	40	Observational chronic ABMR	15% graft loss at 1 year No improvement in graft function in surviving grafts at 1 year Progression of chronic histology lesion

Belimumab

• BAFF (=BLyS) is an important mediator of B maturation and provides a survival signal to LLPC

Agarwal D et al. Transpl Immunol 2021;69:101465

Belatacept

80

1st Bx:

- Belatacept (CTLA-4Ig) interferes with T : B interactions mediated by CD28 biding to CD80/86
- Inhibits Bcell including memB activation and differentiation towards PC

796

sCr

Conclusions

- Pre- and post-engraftment sensitization remain significant barriers in kidney transplantation
- Despite a well-established understanding of the pathways to sensitization we still lack a nuanced knowledge of the regulation of these pathways
- Current desensitization protocols are "heavy-handed" and efficacy may be limited by our inability to address the effect of these interventions on innate counter-regulatory pathways
- This is compounded by an inability to characterize the "balance" of the immune system in the individual patient
- Multiple levels of intervention are required to desensitize
- Use of multiple immunosuppressants is likely to increase the probability of adverse events and cost of intervention

• Prevention is better than cure