Non-invasive detection of renal allograph rejection

Johan Nel

Stellenbosch University/ Tygerberg Hospital

Case scenarios

- Case 1:
 - 26 yr old, transplanted 8 years ago. Creatinine 78micromol/L, stable and well. Newly married, pregnant, abrupt rise in creatinine to 150 micromol/L at 16 weeks pregnancy
- Case 2:
 - 42 yr old, transplanted 4 weeks ago. Slow, progressive climb in creatinine from 130 micromol/L by 50micromol/L per week. Recent drop in Hb by 3 g/dl, platelets 74000
- Case 3:
 - 31 yr old, transplanted 4 years ago. Coincidental discovery of doubling of serum creatinine from 250 micromol/L on routine 3-monthly visit.

Biopsy still the gold standard

- ► Graft dysfunction: a very wide differential...
- Always keep time from transplant in mind
- Other than rejection: The OBVIOUS ones
 - Obstruction
 - CNI toxicity
 - Graft Pyelonephritis
- Histological mimickers
 - Interstitial nephritis (drug- or infection related)
 - ► Viruses: CMV & BK
 - ► PTLD

What makes us hesitate?

- 1. Complications
 - ► Whittier, CKJ October 2018
 - Peters B et al, Acta Radiologica 2014
- 2.Unfit patients
- ▶ 3. Incomplete answers, time delays

Kidney biopsy: Banff...

Category 1 Normal or non-specific changes	Category 2 Antibody mediated changes Active antibody mediated rejection	Chronic active antibody mediated rejection	Chronic (inactive) antibody mediated rejection
C4d staining without evidence of rejection	Category 3 Suspicious for T cell mediated rejection (borderline)	Category 4 T cell mediated rejection Acute T cell mediated rejection (Grade I-III)	Chronic active T cell mediated rejection (Grade I-II)
	Categ		

Category 5 Polyomavirus nephropathy Grade I

	<u> </u>				
	ABMR continuum				
	Early acute ABMR (+XM)	Acute ABMR	Active (smoldering) ABMR	Chronic active ABMR	
Clinical v	Clinically apparent: AKI, <1 month post-transplant	Usually clinically apparent: AKI	Subclinical	Subclinical or clinically apparent: Progressive renal insufficiency, proteinuria, hypertension	
Histology	ATN, thrombi, mild capillaritis, v lesions	ATN, thrombi, capillaritis, v lesions	Capillaritis only (g, ptc)	Capillaritis and TG, TA, or PTCBMML	
^{C₄d} ₩	Diffuse +	+	Negative, focal +, occasionally diffuse +	Negative, focal +, occasionally diffuse +	
Serum DSA 🌱	High	High	Low, mid	Low, mid	

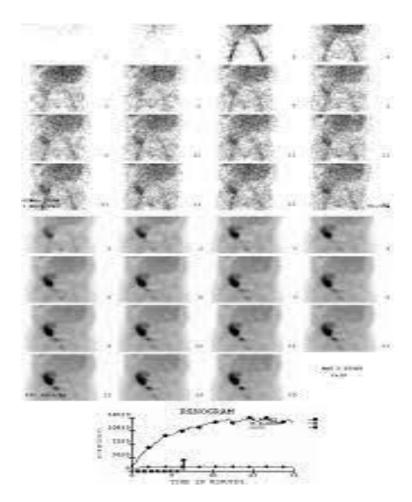
FIGURE 3 ABMR continuum. This schematic provides a reference for thinking about the continuum of "pure ABMR" in kidney transplant recipients with preformed DSA, as detailed in this article. Not included in the figure is combined ABMR and T cell mediated rejection in patients with de novo DSA and under-immunosuppression (iatrogenic or due to nonadherence). AKI, acute kidney injury; ATN, acute necrosis/injury; g, glomerulitis; ptc, peritubular capillaritis; v lesions, Banff vascular lesions (endothelialitis, fibrinoid necrosis of vessels); TG, transplant glomerulopathy; TA, transplant arteriopathy; PTCBMML, peritubular capillary basement membrane multilayering (by electron microscopy); +XM, positive crossmatch.

Cornell, LD: Histological features of antibody-mediated rejection: the Banff classification and beyond. Front. Immunol. 27 September 2021

Traditional non-invasive methods: ("Old-school")

Bio-markers:

- Creatinine
- Proteinuria
- DSA's
- Imaging:
 - Ultrasound
 - Nuclear renography


Traditional non-invasive methods: ("Old-school")

Imaging:

- Ultrasound: increased graft size, loss of CMD, hypoechoic pyramids, decreased echogenicity...
 - Non-specific
 - Also tells us about obstruction, fluid collections, vascular patency

Doppler Resistance indices? Keep in mind the wide list of causes of a raised RI!

Nuclear Renography

- 3 Phases: perfusion , concentration & excretion:
- Early baseline
- Comparative studies
- MAG3 previously favored, now DTPA
- Can assist with diagnosis of thrombosis, obstruction or urine leak
- Diagnosis "suggestive of", & Can't differ between ABMR & cellular rejection
- ► CAVEAT: CNI toxicity can jinx all

Volkan-Salanci B, Erbas B. Imaging in renal transplants: an update. Semin Nucl Med 51:364-379, 2021

Anything new from Nuclear Medicine?

Nuclear renography:

Multiparameter texture analysis differentiates ATN from AR

(sensitivity: 88%, specificity 92.3%)

Concept: allograft rejection causes tissue changes. These changes can affect the texture of a kidney image.

Ardakani AA, et al: Scintigraphic texture analysis for assessment of renal allograft function. Pol J Radiol 83:e1-e10, 2018

Radiolabeled Leucocyte scintigraphy

Several studies showing potential benefit (early rejection vs ATN, 81% sensitivity)

Grabner's T-lymphocyte rat study not verified in humans

F18 - FDG PET scanning

Activated leucocytes need energy! Uptake independent of renal fx.

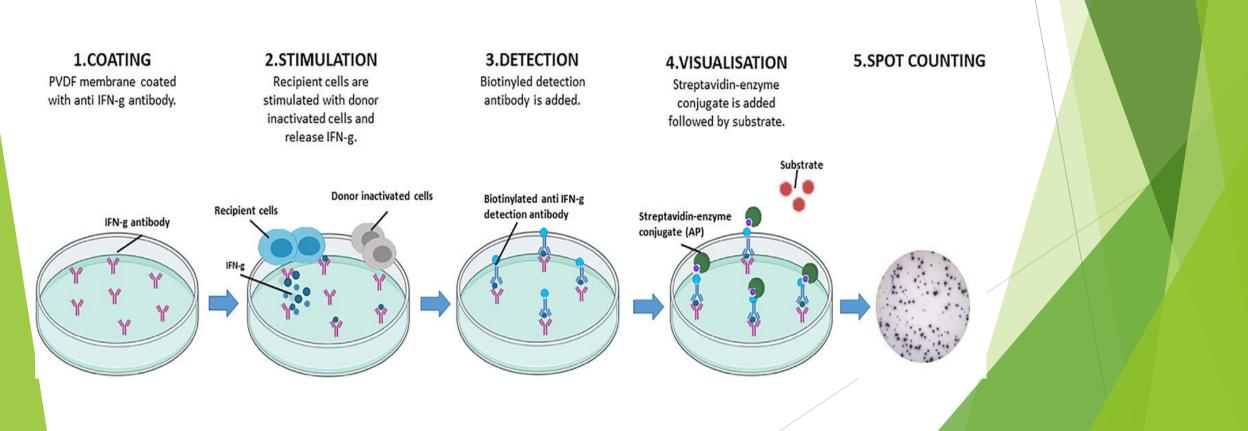
Biomarkers: 1.BLOOD

Plenty markers!

-Simon T, Am J Transplant 2003: serial perforin & granzyme B gene expression in peripheral blood

-Aquino-Dias, KI 2008: Parameters associated w FOXp3 gene expression in delayed graft function of benefit

-Gunter OP, Transplantation 2009: 160 genes differentially expressed in peripheral blood samples of pts with biopsy confirmed acute rejection


-Kurian SM, PloS1 2009: Gene expression profiles reveal over 2400 genes for mild CAN, and over 700 for moderate/severe CAN.

-Matz M, Transplantation 2016: combined measurement of microRNA arrays may help to better identify T-cell mediated vascular rejection

ETC ETC ETC

What if we could do functional cellbased immune monitoring?

Donor-specific IFN-gamma T cell ELISpot

ELIspot (continued)

Germanova E et al. ELIspot assay and prediction of organ transplant rejection. Int J Immunogenet 2022 Feb 49(1)

interferon (IFN)-gamma enzyme-linked immunospot assay

- Increased frequency of AR, poorer graft fx at 12 months
- HLA mismatching= +Ellspot, +Acute rejection
- no association between +ELIspot pre-transplant and AR in patients who got ATG

MUCH criticism of single-center studies: lack of uniformity

- Montero (meta analysis, 2019): sensitivity 64% specificity 65% for predicting AR
- Negative predictive value>90% in low risk patients
- Suboptimal for clinical use, but may improve in combination w other biomarkers

"kidney recipients with high numbers of T and B memory cells may not always develop rejection, which could be due to high tolerogenic immunity"

- ► HLA-specific Ig G B cell & donor-specific B cell ELIspot:
 - Currently a clinical dead-end

Kidney Solid Organ Response Test (kSORT)

- Method:
- Advantages (AART trial, Plos Med, November 2014)
 - Predict pts at risk (Sens 92%, spec 93%)
 - Predicted rejection in 60% up to 3 months prior
 - Identified 12 of 16 cases of subclinical rejection
 - Combined with ELIspot: improves accuracy for subclinical AR , and distinguishing between T-cell- & ABMR
- Subsequent studies FAILED TO VALIDATE its utility for detection of AR in the 1st year under real-world conditions
- Commercialization program unclear (Immucor DX)

Donor-derived cell-free DNA

- Idea "stolen" from fetal medicine
- CONCEPT: Plasma levels of dd-cfDNA released into the bloodstream by dead cells in the injured allograft
- elevated in patients with acute rejection
- Cut-off determined at 1%
- Overall, PPV 61% NPV 81%
- Correlates w biopsy findings of AR BUT can't distinguish between T-cell & ABMR (although median dd-cfDNA higher for ABMR)
- Commercially: Plasma Allosure & Prospera available, busy w registry studies

Biomarkers: 2. URINE

PROTEINS

- chemokine (C-X-C motif) ligands 9 and 10 (CXCL9 and CXCL10)
- CXCL9: T-cell mediated rejection (PPV 68% NPV92%)
- CXCL10: ABMR
- CTOT1 study: PPV low, NPV better best application to determine pts at LOW risk for T-cell mediated rejection (drug weaning!) BUT increased levels also in BK virus nephropathy

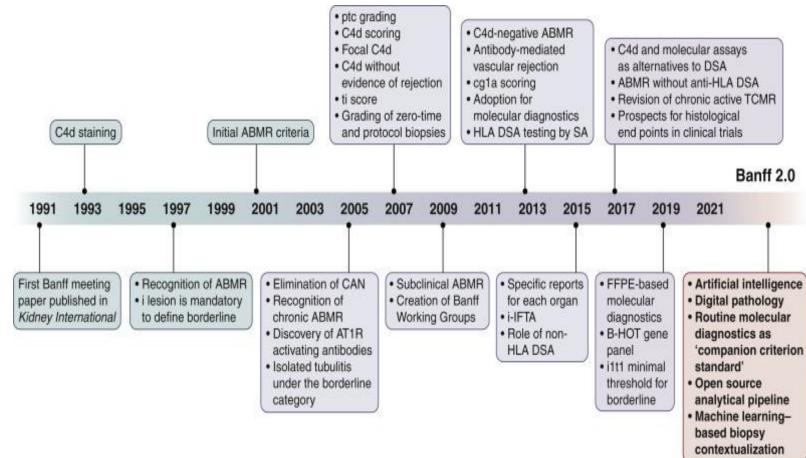
Messenger RNA's

- kidney allograft may function as an "in vivo flow cytometer"
- Single-center studies: perforin, granzyme-B, IFN-inducible protein 10
- CTOT4 (2013) : very promising 3-gene signature for determining TCMR, and distinguishing it from ABMR
- Can detect weeks before clinical evidence of graft dysfunction, BUT extensive degradation of mRNA is a limitation.

Biomarkers: 2. URINE (continued)

Urine proteomics/peptidomics: Currently a quagmire.

Urine microRNA's:


- Small ribonucleotides, regulating gene expression.
- ▶ Initial study compared stable Tx pts , those with UTI, & acute graft dysfunction
- miR-210 and 10-b downregulated in acute rejection, miR-210 at low level also predicted poorer graft fx at 1 year.
- Maluf DG (KI 2014): subset of MiRNA's found in patients with interstitial fibrosis & tubular atrophy, compared to those with normal graft function, can be used to monitor & project worsening graft function.

Summary

Limited accuracy, lowish PPV's, often NPV more of value

- Many tests have a role in diagnosis of only one specific part of the puzzle
- Costly, unpractical
 - ► Under which circumstances, & in what order?
 - Naesens M, et al. A Practical Guide to the Clinical Implementation of Biomarkers for Subclinical Rejection Following Kidney Transplantation. Transplantation, April 2020
- May guide therapy? One day, but not yet.

The evolution of Banff... Invasive molecular markers

